Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
LA188257 - 18077 Harlow Path Permit Pack
RESIDENTIAL BUILDING PERMIT APPLICATION CITY OF LAKEVILLE BUILDING INSPECTIONS DEPARTMENT 20195 HOLYOKE AVENUE LAKEVILLE, MN 55044 952-985-4440 Office Use Only __________________ Permit Number ___________________ Received By ___________________ Date Received ___________________ Fee Total SITE ADDRESS: MAILING ADDRESS: CITY: STATE: ZIP: JOB DESCRIPTION:__________________________________ MASTER PLAN: (Number or Address)____________________ LIST OTHER STRUCTURES ON PROPERTY:_______________________________________________________________ ESTIMATED VALUATION: PROPOSED START DATE: END DATE: (New Residential Only): LEGAL DESCRIPTION: LOT: _____ BLOCK: _____ SUBDIVISION: APPLICANT IS: RESIDENT OWNER CONTRACTOR EMAIL NEW MODEL HOME: YES NO (IF YES – ADMINISTRATIVE PERMIT REQUIRED) PLEASE FILL OUT THE FOLLOWING COMPLETELY (All Contractor information must be as listed on State License) RESIDENT OWNER NAME:_______________________________________________________________________________ HOME PHONE #:_____________________________ CELL PHONE:___________________________ GENERAL CONTRACTOR Homeowner Contractor CONTRACTOR:_______________________________________________________________________ LICENSE #:BC______________ LEAD CERTIFICATE#_______________ (PRE 1978 STRUCTURE) OFFICE PHONE #:_____________________________ CELL PHONE:___________________________ ADDRESS:____________________________ CITY:________________ ST:______ ZIP:____________ PLUMBING WORK Homeowner Contractor CONTRACTOR:__________________________________________LICENSE #: PM______________ OFFICE PHONE #:_____________________________ CELL PHONE:___________________________ ADDRESS:____________________________ CITY:________________ ST:______ ZIP:____________ MECHANICAL WORK Homeowner Contractor CONTRACTOR:________________________________________ _______________________________ OFFICE PHONE #:_____________________________ CELL PHONE:___________________________ ADDRESS:____________________________ CITY:________________ ST:______ ZIP:____________ BOND #:_______________________________________ EXPIRATION DATE____________________ SEWER/WATER CONTRACTOR New Construction Only NAME:________________________________________________ ______________________________ HOME PHONE _____________________________ CELL PHONE:______________________________ BOND #:_______________________________________ EXPIRATION DATE____________________ INTEREST EARNINGS ON THE ESCROW ACCOUNTS, IF ANY, ARE RETAINED BY THE CITY TO OFFSET THE ADMINISTRATIVE COSTS ASSOCIATED WITH PROCESSING THE ESCROW APPLICATION AND REFUND. I HEREBY APPLY FOR A BUILDING PERMIT AND I ACKNOWLEDGE THAT THE INFORMATION ABOVE IS COMPLETE AND ACCURATE; THAT THE WORK WILL BE IN CONFORMANCE WITH THE ORDINANCES AND CODES OF THE CITY AND WITH THE STATE BUILDING CODE, THAT I UNDERSTAND THIS IS NOT A PERMIT AND WORK IS NOT TO START WITHOUT A PERMIT AND THAT THE WORK WILL BE IN ACCORDANCE WITH THE APPROVED PLAN. NAME OF APPLICANT (Please Print)DATE APPLICANT’S SIGNATURE: www.lakevillemn.gov RESIDENTIAL BUILDING PERMIT APPLICATION PAGE 2 OFFICE USE ONLY BUILDING PERMIT TYPE REQUIRED INSPECTIONS SINGLE FAMILY DWELLING BUILDING DUPLEX AS BUILT TOWNHOUSE UNITS BUILDING FINAL DETACHED TOWN HOUSE UNIT DECK FOOTING CONDO FIREPLACE ACESSORY BUILDING FOOTING REROOF FOUNDATION RESIDE FRAMING PORCH FRAMING GARAGES INSULATION RES ADDN/REPAIR/RMDL DECK PORCH GARAGES LATH LOWER LEVEL FINISH LOWER LEVEL FINAL ADDITION OTHER FOUNDATION ONLY PORCH FOOTING MISCELLANEOUS POURED WALL DEMO SEPTIC TANK REMOVAL MOVED SITE MECHANICAL CITY BUILDING VALUATION: $AIR TEST FINAL BUILDING PERMIT FEES ROUGH-IN $PERMIT FEE PLUMBING $PLAN CHECK FINAL $SURCHARGE ROUGH-IN $METRO SAC METER SIZE $CITY WATER HOOKUP UNIT PRESSURE REDUCING VALVE $CITY SEWER HOOKUP UNIT SEWER/WATER $LANDSCAPE ESCROW SEWER/WATER $TREE ESCROW FINAL $MISC ESCROW STREET DRAINTILE $PLUMBING BUILDING INFORMATION $MECHANICAL TYPE OF CONSTRUCTION $SEWER WATER ZONING $OTHER CODE EDITION $TOTAL FIRE SUPPRESSION SYSTEM OCCUPANCY GROUP APPROVED BY: BUILDING INSPECTOR: Date: PLUMBING/MECHANICAL INSPECTOR: Date: COMMENTS: 20195 Holyoke Avenue, Lakeville, MN 55044 952-985-4400 952-985-4499 fax www.lakevillemn.gov Sewer & Water Tie Card Address:________________________________________ Contractor:______________________________________ Permit Number:__________________________________ Final Date:________________ Street Drain-Tile:______ Size of Water Service: 1” Comments: AIRTEST SANITARY OVER 20’/2 FITTINGS THIS CARD MUST BE COMPLETED AND ON-SITE AT TIME OF SEWER & WATER INSPECTION Courtland 2 E/I ® 10877 Harlow Path Avonlea-4th Addition Finished Basement Rec, Bed, Bath - A2.1C Concept Approval ONLY Subject to Field Inspection Inspector Date 2020 MN Bldg Code 02/22/2021dmathews ®Vinyl Siding on Side and Rear Elevation. Hardboard Siding on Front Elevation. LP SHAKE SIDING FACE APPLIED STONE VENEER LP HORIZONTAL LAP SIDING FACE APPLIED STONE VENEER HORIZONTAL LAP SIDING Secure door closed until deck is constructed with a separate permit. ®Interior BWP Above UFER Ground -Provide 20' Rebar in footing and stub up near electrical service panel. ®-Min. 15" clearance to any obstruction from center of W.C., 24" in front(typ). Strap 96" GB 64" GB 96" GB 29" CS-WSP 27" CS-WSP 36" WSP PFHPFH Strap Strap ® ® (REAR WALL ONLY)® HOUSE GARAGE ® ® ® ®C/SD-3. ®C/SD-3. 3 ▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪MINNESOTAI hereby certify that this plan, specification, or reportwas prepared by me or under my direct supervisionand that I am a duly licensed Professional Engineerunder the laws of the State of Minnesota.Print Name: _______________________________Signature: ________________________________Date: ____________________ License # _______James P. Shedlauskas417764/13/20*ENE5$L N27ES $NDDE7$ILS I hereby certify that this plan, specification, or reportwas prepared by me or under my direct supervisionand that I am a duly licensed Professional Engineerunder the laws of the State of Minnesota.Print Name: _______________________________Signature: ________________________________Date: ____________________ License # _______James P. Shedlauskas417764/13/20 I hereby certify that this plan, specification, or reportwas prepared by me or under my direct supervisionand that I am a duly licensed Professional Engineerunder the laws of the State of Minnesota.Print Name: _______________________________Signature: ________________________________Date: ____________________ License # _______James P. Shedlauskas417764/13/20 I hereby certify that this plan, specification, or reportwas prepared by me or under my direct supervisionand that I am a duly licensed Professional Engineerunder the laws of the State of Minnesota.Print Name: _______________________________Signature: ________________________________Date: ____________________ License # _______James P. Shedlauskas417764/13/20 I hereby certify that this plan, specification, or reportwas prepared by me or under my direct supervisionand that I am a duly licensed Professional Engineerunder the laws of the State of Minnesota.Print Name: _______________________________Signature: ________________________________Date: ____________________ License # _______James P. Shedlauskas417764/13/20 © © TOTAL INPUT OF APPLIANCES1, THOUSANDS OF Btu/hr (kW) REQUIRED FREE AREA OF AIR-SUPPLY OPENING OR DUCT, SQUARE INCHES (sq mm) ACCEPTABLE APPROXIMATE ROUND DUCT EQUIVALENT DIAMETER2, INCH (mm) 25 (8)7 (4,500)3 (75) 50 (15)7 (4,500)3 (75) 75(23)11 (7,000)4 (100) 100 (30)14 (9,000)4 (100) 125 (37)18 (12,000)5 (125) 150 (45)22 (14,000)5 (125) 175 (53)25 (16,000)6 (150) 200 (60)29 (19,000)6 (150) 225 (68)32 (21,000)6 (150) 250 (75)36 (23,000)7 (175) 275 (83)40 (26,000)7 (175) 300 (90)43 (28,000)7 (175) 325 (98)47 (30,000)8 (200) 350 (105)50 (32,000)8 (200) 375 (113)54 (35,000)8 (200) 400 (120)58 (37,000)9 (225) 1. For total inputs falling between listed capacities, use next largest listed input. 2. If flexible duct is used, increase the duct diameter by one inch. * *Flexible duct shall be stretched with minimal sags. TABLE 304.1 COMBUSTION AIR REQUIREMENTS FOR GAS-FIRED APPLIANCES WHEN THE COMBINED INPUT IS UP TO AND INCLUDING 400,000 Btu/hr BTU Amount for Non-direct vent appliances_____________________ 1 2 3 4 5 6 2 Conditioned space1 (in sq. ft.) Total/ Continuous Total/ Continuous Total/ Continuous Total/ Continuous Total/ Continuous Total/ Continuous 1000-1500 60/40 75/40 90/45 105/53 120/60 135/68 1501-2000 70/40 85/43 100/50 115/58 130/65 145/73 2001-2500 80/40 95/48 110/55 125/63 140/70 155/78 2501-3000 90/45 105/53 120/60 135/68 150/75 165/83 3001-3500 100/50 115/58 130/65 145/73 160/80 175/88 3501-4000 110/55 125/63 140/70 155/78 170/85 185/93 4001-4500 120/60 135/68 150/75 165/83 180/90 195/98 4501-5000 130-65 145/73 160/80 175/88 190/95 205/103 5001-5500 140/70 155/78 170/85 185/93 200/100 215/108 5501-6000 2 150/75 165/83 180/90 195/98 210/105 225/113 1. Conditioned space includes the basement and conditioned crawl spaces. 2. If conditioned space exceeds 6000 sq. ft. or there are more than 6 bedrooms, use Equation R403.5.2 R403.5.2 Total Ventilation rate. The mechanical ventilation system shall rovide sufficient outdoor air to equal the total ventilation rate average for each 1- hour period in accordance with Table R403.5.2, or Equation 403.5.2, based on the number of bedrooms and square footage of conditioned space, including the basement and conditioned crawl spaces. For the purposes of Table R403.5.2 and Section R403.5.3, the following applies: a. Equation R403.5.2 Total ventilation rate: Total ventilation rate (cfm) = (0.02 x square feet of conditioned space) + (15 x (number of bedrooms +1)) b. Equation R403.5.2.1 Continuous ventilation rate: Continuous ventilation rate (cfm) = Total ventiation rate/2 Amount Total _________________________ Amount Continuous____________________ TABLE R403.5.2 NUMBER OF BEDROOMS VENTILATION REQUIREMENTS ONE OR MULTIPLE POWER VENT OR DIRECT VENT APPLIANCES OR NO COMBUSTION APPLIANCESA ONE OR MULTIPLE FAN- ASSISTED APPLIANCES AND POWER VENT OR DIRECT VENT APPLIANCESB ONE ATMOSPHERICALLY VENTED GAS OR OIL APPLIANE OR ONE SOLID FUEL APPLIANCEC MULTIPLE APPLIANCES THAT ARE ATMOSPHERICALLY VENTED GAS OR OIL APPLIANCES OR SOLID FUEL APPLIANCESD 1. Use the Appropriate Column to Estimate House Infiltration a) pressure factor (cfm/sf) b) conditioned floor area (sf) (including unfinished basements) Estimated House Infiltration (cfm): [1a x 1b] 2. Exhaust Capacity a) clothes dryer b) 80% of largest exhaust rating (cfm): (not applicable if recirculating system or if powered makeup air is electrically interlocked and matched to exhaust) c) 80% of next largest exhaust rating (cfm):not applicable (not applicable if recirculating system or if powered makeup air is electrically interlocked and matched to exhaust) Total Exhaust Capacity (cfm): [2a+2b+2c] 3. Makeup Air Requirement a) Total Exhaust Capacity (from above) b) Estimated House Infiltration (from above) Makeup Air Quality (cfm): [3a - 3b] (if value is negative, no makeup air is needed 4. For Makeup Air Opening Sizing, refer to Table 501.4.2. A. Use this column if there are other than fan-assisted or atmospherically vented gas or oil appliances or if there are no combustion appliances. B. Use this column if there is one fan-assisted appliance per venting system. Other than atmospherically vented appliances may also be included. C. Use this column if there is one atmospherically vented (other than fan-assisted) gas or oil appliance per venting system or one solid fuel appliance. D. Use this column if there are multiple atmospherically vented gas or oil appliances using a common vent or if there are atmospherically vented gas or oil appliances and solid fuel appliances. Table 501.4.1 Procedure to Determine Makeup Air Quantity for Exhaust Appliances in Dwelling Units Choose Which Applies TYPE OF OPENING ONE OR MULTIPLE POWER VENT OR DIRECT VENT APPLIANCES OR NO COMBUSTION APPLIANCESA ONE OR MULTIPLE FAN- ASSISTED APPLIANCES AND POWER VENT OR DIRECT VENT APPLIANCESB ONE ATMOSPHERICALLY VENTED GAS OR OIL APPLIANCE OR ONE SOLID FUEL APPLIANCEC MULTIPLE APPLIANCES THAT ARE ATMOSPHERICALLY VENTED GAS OR OIL APPLIANCES OR SOLID FUEL APPLIANCESD PASSIVE MAKEUP AIR OPENING DUCT DIAMETERE,F,G OR SYSTEM (cfm)(cfm)(cfm)(cfm)(inches) Passive opening 1-36 1-22 1-15 1-9 3 Passive opening 37-66 23-41 16-28 10-17 4 Passive opening 67-109 42-66 29-46 18-28 5 Passive opening 110-163 67-100 47-69 29-42 6 Passive opening 164-232 101-143 70-99 43-61 7 Passive opening 233-317 144-195 100-135 62-83 8 Passive opening with motorized damper 318-419 196-258 136-179 84-110 9 Passive opening with motorized damper 420-539 259-332 180-230 111-142 10 Passive opening with motorized damper 540-679 333-419 231-290 143-179 11 Powered makeup airH >679 >419 >290 >179 Not applicable A. Use this column if there are other than fan-assisted or atmospherically vented gas or oil appliances or if there are no combustion appliances. B. Use this column if there is one fan-assisted appliance per venting system. Other than atmospherically vented appliances may also be included. C. Use this column if there is one atmospherically vented (ther than fan-assisted) gas or oil appliance per venting system or one solid fuel appliance. D. Use this column if there are multiple atmospherically vented gas or oil appliances using a common vent or if there are atmospherically vented gas or oil appliances and solid fuel appliances. E. An equivalent length of 100 feet of round smooth metal duct is assumed. Subtract 40 feet for the exterior hood and ten feet for each 90-degree elbow to determine the remaining length of straight duct allowable. F. If flexible duct is used, increase the duct diameter by one inch. Flexible duct shall be stretched with minimal sags. G. Barometric dampers are prohibited in passive makeup air openings when any atmospherically vented appliance is installed. H. Powered makeup air shall be electrically interlocked with the largest exhaust system. Table 501.4.2 Makeup Air Opening Sizing Table for New and Existing Dwelling Units IFGC Appendix E, Worksheet E-1 Residential Combustion Air Calculation Method (for Furnace, Boiler, and/or Water Heater in the Same Space) Step 1: Complete vented combution appliace information: Furnace/Boiler: Draft Hood Fan Assisted Direct Vent Input: Btu/hr (Not fan Assisted) & Power Vent Water Heater: Draft Hood Fan Assisted Direct Vent Input: Btu/hr ( Not fan Assisted) & Power Vent Step 2: Calculate the volume of the Combustion Appliance Space (CAS) containing combustion appliances. The CAS includes all spaces connected to one another by code compliant openings. CAS volume: ft3 Step 3: Determine air Changes per Hour (ACH)1 Default ACH values have been incorporated into Table E-1 for use with Method 4b (KAIR Method). If the year of construction or ACH is not known, use method 4a (Standard Method). Step 4: Determine Required Volume for Combustion Air. 4a. Standard Method Total Btu/hr input of all combustion appliances (DO NOT COUNT DIRECT VENT APPLIANCES) Input: Btu/hr Use Standard Method column in Table E-1 to find Total Required Volume (TRV) TRV: ft3 If CAS Volume (from Step 2) is greater than TRV then no outdoor openings are needed. If CAS Volume (from Step 2) is less than TRV then go to STEP 5. 4b. Known Air Infiltration Rate (KAIR) Method Total Btu/hr input of all fan-assisted and power vent appliances (DO NOT COUNT DIRECT VENT APPLIANCES) Input: Btu/hr Use Fan-Assisted Appliances column in Table E-1 to find Required Volume Fan Assisted (RVFA) RVFA: ft3 Total Btu/hr input of all non-fan-assisted appliances Input: Btu/hr Use Non-Fan-Assisted Appliances column in Table E-1 to find Required Volume Non-Fan-Assisted (RVNFA) RVNFA: ft3 Total Required Volume (TRV) = RVFA + RVNFA TRV = + = ft3 If CAS Volume (from Step 2) is greater than TRV then no outdoor openings are needed. If CAS Volume (from Step 2) is less than TRV then go to STEP 5. Step 5: Calculate the ratio of available interior volume to the total required volume. Ratio = CAS Volume (from Step 2) divided by TRV (from Step 4a or Step 4b) Ratio = Step 6: Calculate Reduction Factor (RF). RF = 1 minus Ratio RF = - = Step 7: Calculate single outdoor opening as if all combustion air is from outside. Total Btu/hr input of all Combustion Appliances in the same CAS (EXCEPT DIRECT VENT) Input: Btu/hr Combustion Air Opening Area (CAOA): Total Btu/hr divided by 3000 Btu/hr per in2 / Btu/hr per in 2 = in2 Step 8: Calculate Minimum CAOA. Minimum CAOA = CAOA multiplied by RF Minimum CAOA = x = in2 Step 9: Calculate Combustion Air Opening Diameter (CAOD) CAOD = 1.13 multiplied by the square root of Minimum CAOA CAOD = 1.13 x Minimum CAOA = in 1If desired, ACH can be determined using ASHRAE calculation or blower door test. Follow procedures in Section 304. CAOA = IFGC Appendix E, Table E-1 Residential Combustion Air Required Volume (Required Interior Volume Based on Input Rating of Appliances) Known Air Infiltration Rate (KAIR) Method (ft3) Input Rating Standard Method Fan Assisted Non-Fan-Assisted (Btu/hr) (ft3) 19941 to Present Pre 19942 19941 to Present Pre 19942 5,000 250 375 188 525 263 10,000 500 750 375 1,050 525 15,000 750 1,125 563 1,575 788 20,000 1,000 1,500 750 2,100 1,050 25,000 1,250 1,875 938 2,625 1,313 30,000 1,500 2,250 1,125 3,150 1,575 35,000 1,750 2,625 1,313 3,675 1,838 40,000 2,000 3,000 1,500 4,200 2,100 45,000 2,250 3,375 1,688 4,725 2,363 50,000 2,500 3,750 1,875 5,250 2,625 55,000 2,750 4,125 2,063 5,775 2,888 60,000 3,000 4,500 2,250 6,300 3,150 65,000 3,250 4,875 2,438 6,825 3,413 70,000 3,500 5,250 2,625 7,350 3,675 75,000 3,750 5,625 2,813 7,875 3,938 80,000 4,000 6,000 3,000 8,400 4,200 85,000 4,250 6,375 3,188 8,925 4,463 90,000 4,500 6,750 3,375 9,450 4,725 95,000 4,750 7,125 3,563 9,975 4,988 100,000 5,000 7,500 3,750 10,500 5,250 105,000 5,250 7,875 3,938 11,025 5,513 110,000 5,500 8,250 4,125 11,550 5,775 115,000 5,750 8,625 4,313 12,075 6,038 120,000 6,000 9,000 4,500 12,600 6,300 125,000 6,250 9,375 4,688 13,125 6,563 130,000 6,500 9,750 4,875 13,650 6,825 135,000 6,750 10,125 5,063 14,175 7,088 140,000 7,000 10,500 5,250 14,700 7,350 145,000 7,250 10,875 5,438 15,225 7,613 150,000 7,500 11,250 5,625 15,750 7,875 155,000 7,750 11,625 5,813 16,275 8,138 160,000 8,000 12,000 6,000 16,800 8,400 165,000 8,250 12,375 6,188 17,325 8,663 170,000 8,500 12,750 6,375 17,850 8,925 175,000 8,750 13,125 6,563 18,375 9,188 180,000 9,000 13,500 6,750 18,900 9,450 185,000 9,250 13,875 6,938 19,425 9,713 190,000 9,500 14,250 7,125 19,950 9,975 195,000 9,750 14,625 7,313 20,475 10,238 200,000 10,000 15,000 7,500 21,000 10,500 205,000 10,250 15,375 7,688 21,525 10,763 210,000 10,500 15,750 7,875 22,050 11,025 215,000 10,750 16,125 8,063 22,575 11,288 220,000 11,000 16,500 8,250 23,100 11,550 225,000 11,250 16,857 8,438 23,625 11,813 230,000 11,500 17,250 8,625 24,150 12,075 1The 1994 date refers to dwellings constructed under the 1994 Minnesota Energy Code. The default KAIR used in this section of the table is 0.20 ACH. 2This section of the table is to be used for dwellings constructed prior to 1994. The default KAIR used in this section of the table is 0.40 ACH. Bold/italic values have been manually overridden Calculations approved by ACCA to meet all requirements of Manual J 8th Ed. 2021-Jan-07 15:51:15 Rig ht-Su ite® U niv er sal 20 19 19 .0.21 RSU1 4478 Page 1 ...ACTS\AF WRIGHTSOFT\Ryland-Courtland-Walkout.rup Calc = MJ8 Front Door faces: E Job:Load Short Form January 7 2021Date:Entire House By: Genz-Ryan Plumbing and Heating 2200 West Highway 13, Burnsville, MN 55337 Phone: 952-767-1000 Fax: 952-767-1900 Email: info@genzryan.com Web: genzryan.com Project Information Lennar Homes- 18077 Harlow PathFor: Design Information InfiltrationClgHtg SimplifiedMethod88-15Outside db (°F) AverageConstruction quality7572Inside db (°F) 1 (Average)Fireplaces1387Design TD (°F) M-Daily range 5030Inside humidity (%) 3558Moisture difference (gr/lb) HEATING EQUIPMENT COOLING EQUIPMENT Make Lennox Make Lennox Trade Trade Model Cond AHRI ref Coil AHRI ref Efficiency 93 AFUE Efficiency 13 SEER Heating input Btuh0 Sensible cooling Btuh0 Heating output Btuh0 Latent cooling Btuh0 Temperature rise °F0 Total cooling Btuh0 Actual air flow cfm687 Actual air flow cfm687 Air flow factor cfm/Btuh0.017 Air flow factor cfm/Btuh0.047 Static pressure in H2O0 Static pressure in H2O0 Space thermostat Load sensible heat ratio 0.85 ROOM NAME Area Htg load Clg load Htg AVF Clg AVF (ft²)(Btuh)(Btuh)(cfm)(cfm) Room1 820 10643 3259 181 153 Crawspace 736 4206 0 71 0 Room3 1559 25638 11409 435 535 Entire House d 3114 40486 14668 687 687 Other equip loads 10018 2556 Equip. @ 0.93 RSM 16001 Latent cooling 3129 TOTALS 3114 50505 19131 687 687 Passive (No Fan ) Active (With fan and monitoring device ) Location (or future location) of Fan: Other Please Describe Here Not applicable, all ducts located in conditioned space Not required per mech. code Passive Powered Interlocked with exhaust device. Describe: Input in BTUS: Capacity in Gallons: Other, describe: AFUE or HSPF% Cfm's " round duct OR " metal duct Not required per mech. code Passive Low: Other, describe: Low: Location of fan(s), describe: Cfm's " round duct OR " metal duct Per R401.3 Certificate. A building certificate shall be posted on or in the electrical distribution panel. New Construction Energy Code Compliance Certificate Name of Residential Contractor MN License Number City Mailing Address of the Dwelling or Dwelling Unit Rigid, Extruded PolystyreneHeat Recover Ventilator (HRV) Capacity in cfms: Energy Recover Ventilator (ERV) Capacity in cfms: Combustion Air Select a Type Location of duct or system: Rim Joist (2nd Floor+) Building envelope air tightness: Below Entire Slab Fuel Type Solar Heat Gain Coefficient (SHGC): Windows & Doors Ceiling, vaulted Bay Windows or cantilevered areas Floors over unconditioned area THERMAL ENVELOPE Foam Open Cell Wall Rigid, Isocynurate Perimeter of Slab on Grade RADON CONTROL SYSTEM Total R-Value of all Types of InsulationType: Check All That Apply Mineral FiberboardInsulation Location Foam, Closed Cell Describe other insulated areas Ceiling, flat Non or Not ApplicableFiberglass, BlownFiberglass, Batts Foundation Wall Output in Tons: Appliances Cooling System Location of duct or system: Heating or Cooling Ducts Outside Conditioned Spaces Make-up Air Select a Type Domestic Water Heater Model Heating System Rim Joist (1st Floor) Average U-Factor (excludes skylights and one door ) U: Duct system air tightness: Rating or Size Efficiency Heating Gain Cooling Load Select Type Describe any additional or combined heating or cooling systems if installed: (e.g. two furnaces or air source heat pump with gas back-up furnace): Residential Load Calculation SEER /EER Capacity continuous ventilation rate in cfms: Heating Loss Manufacturer Total ventilation (intermittent + continuous) rate in cfms: Balanced Ventilation capacity in cfms: High: High: MECHANICAL VENTILATION SYSTEM Date Cert. Posted R-value MECHANICAL SYSTEMS Builders Associaton of Minnesota version 101014 NEW RESIDENTIAL CONSTRUCTION SWPPP VERIFICATION This form must be completed and submitted with all new residential permit applications. New residential building permits WILL NOT be issued without this completed form. Project Site Address: _____________________________________________________________________ Company Name: _________________________________________________________________________ Primary Contact: _________________________________________________________________________ Phone # (24 hr Contact): ______________________ Email: ______________________________________ Description of Land Disturbing Activity: _____________________________________________________ NPDES Construction Stormwater Permit # C000 ___ ___ ___ ___ ___ or # SUB00 ___ ___ ___ ___ ___ If you are not covered under a NPDES Construction Stormwater Permit administered by the MPCA, an erosion and sediment control plan MUST be submitted with the residential building permit application. The permittee(s) shall ensure that the individuals are trained by local, state, federal agencies, professional organizations or other entities in erosion prevention, sediment control, permanent Stormwater management and the Minnesota NPDES/SDS Construction Stormwater Permit (NPDES Construction Stormwater Permit, MPCA) ruction site at least once every seven (7) days during active con (NPDES Construction Stormwater Permit, MPCA) Contact information of person CERTIFIED to provide weekly onsite erosion and sediment control inspections and corrective actions: Name of Person: ________________________________Company: _______________________________ Phone # (24 hr Contact): ______________________ Email: ______________________________________ Entity that Provided Training: ________________________ Certification Expiration Date: ____________ NOTE: Prior to any land-disturbing activity, all erosion and sediment controls must be installed on the project site and on individual lots. No land disturbing activity may begin until a residential building permit has been issued. I understand, the above information to be true and I will have read, understood, and accepted all terms and conditions of the National Pollutant Discharge Elimination System (NPDES) Permit (MN R 100001). The City of Lakeville may issue a STOP WORK ORDER; withhold building inspections; or, draw on securities/escrows to bring the site into compliance with the NPDES Construction Stormwater Permit (MN R 100001) or erosion and sediment control plan. Signature: ________________________________________________ Date:_________________________ Contact the City of Lakeville with questions at erosion@lakevillemn.gov or 952-985-4500 02/12/21 X KP